Frontiers of Network Science Fall 2023

Class 9: Scale Free Networks and Barabasi Model II (Chapters 4-5 in Textbook)

Boleslaw Szymanski

The meaning of scale-free

Scale-free networks: Definition

Definition:

Networks with a power law tail in their degree distribution are called 'scale-free networks'

Where does the name come from?

Critical Phenomena and scale-invariance (a detour)

Phase transitions in complex systems I: Magnetism

CRITICAL PHENOMENA

- Correlation length diverges at the critical point: the whole system is correlated!
- Scale invariance: there is no characteristic scale for the fluctuation (scale-free behavior).
- Universality: exponents are independent of the system's details.

Divergences in scale-free distributions

$$
\begin{aligned}
& P(k)=C k^{-\gamma} \quad k=\left[k_{\min }, \infty\right) \quad \int_{k_{\min }}^{\infty} P(k) d k=1 \quad C=\frac{1}{\int_{k_{\min }}^{\infty} k^{-\gamma} d k}=(\gamma-1) k_{\min }^{\gamma-1} \\
& P(k)=(\gamma-1) k_{\min }^{\gamma-1} k^{-\gamma} \\
& <k^{m}>=\int_{k_{\min }}^{\infty} k^{m} P(k) d k \quad<k^{m}>=(\gamma-1) k_{\min }^{\gamma-1} \int_{k_{\min }}^{\infty} k^{m-\gamma} d k=\frac{(\gamma-1)}{(m-\gamma+1)} k_{\min }^{\gamma-1}\left[k^{m-\gamma+1}\right]_{k_{\min }}^{\infty} \\
& \text { If } m-\gamma+1<0: \quad<k^{m}>=-\frac{(\gamma-1)}{(m-\gamma+1)} k_{\min }^{m}
\end{aligned}
$$

If $m-\gamma+1>0$, the integral diverges.

For a fixed y this means that all moments with $m>\gamma-1$ diverge.

DIVERGENCE OF THE HIGHER MOMENTS

$$
<k^{m}>=(\gamma-1) k_{\min }^{\gamma-1} \int_{k_{\min }}^{\infty} k^{m-\lambda} d k=\frac{(\gamma-1)}{(m-\gamma+1)} k_{\min }^{\gamma-1}\left[k^{m-\gamma+1}\right]_{k_{\min }}^{\infty}
$$

For a fixed y this means all moments $\mathrm{m}>\mathrm{\gamma}-1$ diverge.

Network	N	L	(k)	$\left\langle k_{\text {in }}{ }^{2}\right.$)	($k_{\text {out }}{ }^{2}$)	$\left\langle\mathrm{k}^{2}\right\rangle$	$V_{\text {in }}$	$V_{\text {out }}$	r	
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*	
WWW	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-	
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.	
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-	Many degree exponents are smaller than 3
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-	
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*	
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*	
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*		$\rightarrow<k>$ diverges in the $N \rightarrow \infty$ limit!!!
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-	
Protein Interactions	2,018	2,930	2.90	-	-	32.3	-	-	2.89*-	Network Science: Scale-Free Networks

The meaning of scale-free

Random Network

Randomly chosen node: $k=\langle k\rangle \pm\langle k\rangle^{1 / 2}$
Scale: $\langle k\rangle$
Scale-Free Network
Randomly chosen node: $k=\langle k\rangle \pm \infty$
Scale: none

The meaning of scale-free

$$
k=\langle k\rangle \pm \sigma_{k}
$$

universality

INTERNET BACKBONE

Nodes: computers, routers
Links: physical lines

SCIENCE CITATION INDEX

SCIENCE COAUTHORSHIP

Nodes: scientist (authors)
Links: joint publication

(Newman, 2000, Barabasi et al 2001)

ONLINE COMMUNITIES

Nodes: online user
Links: email contact
Pussokram.com online community; 512 days, 25,000 users.

Kiel University log files
112 days, $\mathrm{N}=59,912$ nodes

Ebel, Mielsch, Bornholdtz, PRE 2002.

Holme, Edling, Liljeros, 2002.

ONLINE COMMUNITIES

Twitter:

Facebook

Brian Karrer, Lars Backstrom, Cameron Marlowm 2011

Barabasi-Albert Model

METABOLIC NETWORK

$$
\begin{array}{ll}
\text { Organisms from all three } & \boldsymbol{P}_{\text {in }}(\boldsymbol{k}) \approx \boldsymbol{k}^{-\mathbf{2 . 2}} \\
\text { domains of life are scale-free! } & \boldsymbol{P}_{\text {out }}(\boldsymbol{k}) \approx \boldsymbol{k}^{-\mathbf{2 . 2}}
\end{array}
$$

TOPOLOGY OF THE PROTEIN NETWORK

Nodes: proteins
Links: physical interactions-binding

H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

C. Elegans

Giot et al. Science 2003
Li et al. Science 2004

Network Science: Scale-Free Networks

Growth and preferential attachment

Barabasi-Albert model Definition

The recognition that growth and preferential attachment coexist in real networks has inspired a minimal model called the Barabási-Albert model (BA model), which generates scale-free networks [1], defined as follows:

We start with m_{0} nodes, the links between which are chosen arbitrarily, as long as each node has at least one link. The network develops following two steps:

1. Growth: at each timestep we add a new node with $m\left(\leq m_{0}\right)$ links that connect the new node to m nodes already in the network.
2. Preferential attachment: the probability $\Pi(k)$ that a link of the new node connects to node i depends on the degree k_{i} as $\Pi\left(k_{i}\right)=k_{i} \sum_{j} k_{j}$

Preferential attachment is a probabilistic mechanism: a new node is free to connect to any node in the network, whether it is a hub or has a single link. However, that if a new node has a choice between a degree-two and a degree-four node, it is twice as likely that it connects to the degree-four node.
[1] A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

The definition of the Barabási-Albert model leaves many mathematical details open:

- It does not specify the precise initial configuration of the first m_{0} nodes.
- It does not specify whether the m links assigned to a new node are added one by one, or simultaneously. This leads to potential mathematical conflicts: If the links are truly independent, they could connect to the same node i, leading to multi-links.

One possible definition with self-loops

$$
p(i=s)=\left\{\begin{array}{cc}
\frac{k_{i}}{2 t-1} & \text { if } 1 \leq s \leq t-1 \\
\frac{1}{2 t-1}, & \text { if } s=t
\end{array}\right.
$$

Possible evolution
 New node is red.

Degree dynamics

Degree distribution for Barabasi-Albert model

$k_{i}(t)=m\left(\frac{t}{t_{i}}\right)^{\beta} \quad \beta=\frac{1}{2}$ for $t \geq m_{0}+i$ and 0 otherwise as system size at t is $N=m_{0}+t-1$
We assume the initial m_{0} nodes create a fully connected graph.
A random node j arriving at time t is with equal probability $1 / N=1 /\left(m_{0}+t-1\right)$ one of the nodes 1 , $2, \ldots . N$, its degree will grow with the above equation, so

$$
\left.P\left(k_{j}(t)\right)<k\right)=P\left(t_{j}>\frac{m^{\frac{1}{\beta}} t}{k^{\frac{1}{\beta}}}\right)=1-P\left(t_{j} \leq \frac{m^{\frac{1}{\beta}} t}{k^{\frac{1}{\beta}}}\right)=1-\frac{m^{\frac{1}{\beta}} t}{k^{\frac{1}{\beta}}\left(t+m_{0}-1\right)}
$$

For the large times t (and so large network sizes) we can replace $\mathrm{t}-1$ with t above, so

$$
\therefore P(k)=\frac{\partial P\left(k_{i}(t)<k\right)}{\partial k}=\frac{2 m^{2} t}{m_{o}+t} \frac{1}{k^{3}} \sim k^{-\gamma} \quad \gamma=3
$$

Degree distribution

$k_{i}(t)=m\left(\frac{t}{t_{i}}\right)^{\beta} \quad \beta=\frac{1}{2}$

$$
\mathrm{P}(\mathrm{k})=\frac{2 m^{2} t}{t-t_{0}} \frac{1}{k^{3}} \sim k^{-\gamma}
$$

$$
\gamma=3
$$

(i) The degree exponent is independent of m.
(ii) As the power-law describes systems of rather different ages and sizes, it is expected that a correct model should provide a time-independent degree distribution. Indeed, asymptotically the degree distribution of the BA model is independent of time (and of the system size N)
\rightarrow the network reaches a stationary scale-free state.
(iii) The coefficient of the power-law distribution is proportional to m^{2}.

NUMERICAL SIMULATION OF THE BA MODEL

(a) We generated networks with $N=100,000$ and $m_{0}=m=1$ (blue), 3 (green), 5 (grey), and 7 (orange). The fact that the curves are parallel to each other indicates that γ is independent of m and m_{0}. The slope of the purple line is -3 , corresponding to the predicted degree exponent $y=3$. Inset: (5.11) predicts $p_{k} \sim 2 m^{2}$, hence $p_{k} / 2 m^{2}$ should be independent of m. Indeed, by plotting $p_{k} / 2 m^{2}$ vs. k, the data points shown in the main plot collapse into a single curve.
(b) The Barabási-Albert model predicts that p_{k} is independent of N. To test this we plot p_{k} for $N=50,000$ (blue), 100,000 (green), and 200,000 (grey), with $m_{0}=m=3$. The obtained p_{k} are practically indistinguishable, indicating that the degree distribution is stationary, i.e. independent of time and system size.
(b)

NUMERICAL SIMULATION OF THE BA MODEL

FIG. 21. Numerical simulations of network evolution: (a) Degree distribution of the Barabási-Albert model, with $N=m_{0}+t$ $=300000$ and $\bigcirc, m_{0}=m=1 ; \square, m_{0}=m=3 ; \bigcirc, m_{0}=m=5$; and $\Delta, m_{0}=m=7$. The slope of the dashed line is $\gamma=2.9$, providing the best fit to the data. The inset shows the rescaled distribution (see text) $P(k) / 2 m^{2}$ for the same values of m, the slope of the dashed line being $\gamma=3$; (b) $P(k)$ for $m_{0}=m=5$ and various system sizes, $O, N=100000 ; \square, N=150000 ; \circ, N=200000$. The inset shows the time evolution for the degree of two vertices, added to the system at $t_{1}=5$ and $t_{2}=95$. Here $m_{0}=m=5$, and the dashed line has slope 0.5, as predicted by Eq. (81). After Barabási, Albert, and Jeong (1999).

The mean field theory offers the correct scaling, BUT it provides the wrong coefficient of the degree distribution.

So assymptotically it is correct ($k \rightarrow \infty$), but not correct in details (particularly for small k).

To fix it, we need to calculate $P(k)$ exactly, which we will do next using a rate equation based approach.

MFT - Degree Distribution: Rate Equation

$<N(k, t)>=t P(K, t) \quad$ Number of nodes with degree k at time t.
Since at each timestep we add one node, we have $\mathrm{N}=\mathrm{t}$ (total number of nodes = number of timesteps)
$\Pi(k)=\frac{k}{\sum_{j} k_{j}}=\frac{k}{2 m t} \quad 2 m$: each node adds m links, but each link contributed to the degree of 2 nodes
Total number of
k-nodes
Number of links added to degree k nodes after the arrival of a new node:

Nr. of degree $k-1$ nodes that acquire a new link, becoming degree k

$$
\frac{k-1}{2} P(k-1, t)
$$

Nr . of degree k nodes that acquire a new link, becoming degree $k+1$

$$
\frac{k}{2} P(k, t)
$$

Total number of

MFT - Degree Distribution: Rate Equation

We do not have $k=0,1, \ldots, m-1$ nodes in the network (each node arrives with degree m) \rightarrow We need a separate equation for degree m modes

MFT - Degree Distribution: Rate Equation

$$
\begin{aligned}
& (N+1) P(k, t+1)=N P(k, t)+\frac{k-1}{2} P(k-1, t)-\frac{k}{2} P(k, t) \quad \mathrm{k}>\mathrm{m} \\
& (N+1) P(m, t+1)=N P(m, t)+1-\frac{m}{2} P(m, t)
\end{aligned}
$$

We assume that there is a stationary state in the $\mathrm{N}=\mathrm{t} \rightarrow \infty$ limit, when $\mathrm{P}(\mathrm{k}, \infty)=\mathrm{P}(\mathrm{k})$

$$
\begin{aligned}
& (N+1) P(k, t+1)-N P(k, t) \rightarrow N P(k, \infty)+P(k, \infty)-N P(k, \infty)=P(k, \infty)=P(k) \\
& (N+1) P(m, t+1)-N P(m, t) \rightarrow P(m)
\end{aligned}
$$

$$
P(k)=\frac{k-1}{2} P(k-1)-\frac{k}{2} P(k)
$$

$$
P(m)=1-\frac{m}{2} P(m)
$$

$$
\begin{aligned}
& P(k)=\frac{k-1}{k+2} P(k-1) \quad \text { k>m } \\
& P(m)=\frac{2}{2+m}
\end{aligned}
$$

MFT - Degree Distribution: Rate Equation

$$
P(k)=\frac{k-1}{k+2} P(k-1) \quad \rightarrow \quad P(k+1)=\frac{k}{k+2} P(k)
$$

$$
P(m)=\frac{2}{m+2}
$$

$$
P(m+1)=\frac{m}{m+3} P(m)=\frac{2 m}{(m+2)(m+3)}
$$

$$
P(m+2)=\frac{m+1}{m+4} P(m+1)=\frac{2 m(m+1)}{(m+2)(m+3)(m+4)}
$$

$$
P(m+3)=\frac{m+2}{m+5} P(m+2)=\frac{2 m(m+1)}{(m+3)(m+4)(m+5)}
$$

$$
m+3 \rightarrow k
$$

$$
P(k)=\frac{2 m(m+1)}{k(k+1)(k+2)}
$$

$$
P(\boldsymbol{k}) \sim \boldsymbol{k}^{-3} \quad \text { for large } k
$$

MFT - Degree Distribution: A Pretty Caveat

Start from eq.

$$
P(k)=\frac{k-1}{2} P(k-1)-\frac{k}{2} P(k)
$$

$$
2 P(k)=(k-1) P(k-1)-k P(k)=-P(k-1)-k\lceil P(k)-P(k-1)\rceil
$$

$$
2 P(k)=-P(k-1)-k \frac{P(k)-P(k-1)}{k-(k-1)}=-P(k-1)-k \frac{\partial P(k)}{\partial k}
$$

$$
P(k)=-\frac{1}{2} \frac{\partial k P(k)]}{\partial k}
$$

Its solution is: $\quad P(k) \sim k^{-3}$

All nodes follow the same growth law

$$
\begin{array}{ll}
\frac{\partial k_{i}}{\partial t} \propto \Pi\left(k_{i}\right)=A \frac{\boldsymbol{k}_{i}}{\sum_{j} k_{j}} & \text { In limit: } A \frac{k_{i}}{\sum_{j} k_{j}}=A \frac{k_{i}}{2 m t} \quad \text { So: } \\
\text { Use: } \sum_{j} k_{j}=2 m(t-1)+\frac{m_{0}\left(m_{0}-1\right)}{2} & m=\sum_{i} \frac{\Delta k_{i}}{d t}=\sum_{i} A \frac{k_{i}}{2 m t}=A
\end{array}
$$

$\frac{\partial k_{i}}{\partial t}=\frac{k_{i}}{2 t} \quad \frac{\partial k_{i}}{k_{i}}=\frac{\partial t}{2 t} \quad \int_{m} \frac{\partial k_{i}}{k_{i}}=\int_{t_{i}} \frac{\partial t}{2 t} \quad \ln \left(\frac{k}{m}\right)=\frac{1}{2} \ln \left(\frac{t}{t_{i}}\right)=\ln \left(\frac{t}{t_{i}}\right)^{1 / 2}$
$k_{i}(t)=m\left(\frac{t}{t_{i}}\right)^{\beta} \quad \beta=\frac{1}{2}$
8: dynamical exponent
A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

