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The meaning of scale-free
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Definition:

Networks with a power law tail in their degree distribution are called 
‘scale-free networks’ 

Where does the name come from?

Critical Phenomena and scale-invariance
(a detour)

Slides after Dante R. Chialvo 

Scale-free networks: Definition
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Phase transitions in complex systems I: Magnetism

T = 0.99 Tc T = 0.999 Tc

ξ ξ

T = Tc T = 1.5 Tc T = 2 Tc
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• Correlation length diverges at the critical point: the 
whole system is correlated!

• Scale invariance: there is no characteristic scale for 
the fluctuation (scale-free behavior).

• Universality: exponents are independent of the 
system’s details.

CRITICAL PHENOMENA
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Divergences in scale-free distributions

If m-γ+1<0: 

If m-γ+1>0,    the integral diverges.  

For a fixed γ this means that all moments with    m>γ-1  diverge.  
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For a fixed γ this means all moments   m>γ-1 diverge.  

Many degree exponents are smaller 
than 3

 <k2> diverges in the N∞ limit!!!

 <k> diverges in the N∞ limit!!!

DIVERGENCE OF THE HIGHER MOMENTS
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Network N L 〈k〉 〈kin
2〉 〈kout

2〉 〈k2〉 γin γout γ

Internet 192,244 609,066 6.34 - - 240.1 - - 3.42*

WWW 325,729 1,497,134 4.60 1546.0 482.4 - 2.00 2.31 -

Power Grid 4,941 6,594 2.67 - - 10.3 - - Exp.

Mobile-Phone 
Calls

36,595 91,826 2.51 12.0 11.7 - 4.69* 5.01* -

Email 57,194 103,731 1.81 94.7 1163.9 - 3.43* 2.03* -

Science 
Collaboration

23,133 93,437 8.08 - - 178.2 - - 3.35*

Actor Network 702,388 29,397,908 83.71 - - 47,353.7 - - 2.12*

Citation 
Network

449,673 4,689,479 10.43 971.5 198.8 - 3.03* 4.00* -

E. Coli 
Metabolism

1,039 5,802 5.58 535.7 396.7 - 2.43* 2.90* -

Protein 
Interactions

2,018 2,930 2.90 - - 32.3 - - 2.89*-
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The meaning of scale-free
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universality

Section 5     

Network Science: Scale-Free Networks



(Faloutsos, Faloutsos and Faloutsos, 1999)

Nodes: computers, routers 
Links:   physical lines

INTERNET BACKBONE
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(γ = 3)

(S. Redner, 1998)

P(k) ~k-γ

1736 PRL papers (1988)

SCIENCE CITATION INDEX

Nodes: papers
Links:   citations

578...

25

H.E. Stanley,...
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SCIENCE COAUTHORSHIP

M: math
NS: neuroscience

Nodes: scientist (authors) 
Links: joint publication

(Newman, 2000, Barabasi et al 2001)
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Nodes: online user  
Links:  email contact

Ebel, Mielsch, Bornholdtz, PRE 2002.

Kiel University log files 
112 days, N=59,912 nodes

Pussokram.com online community; 
512 days,  25,000 users.

Holme, Edling, Liljeros, 2002.

ONLINE COMMUNITIES
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ONLINE COMMUNITIES

Twitter:

Jake Hoffman, Yahoo, 

Facebook

Brian Karrer, Lars Backstrom, Cameron Marlowm 2011
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Barabasi-Albert Model
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Organisms from all three 
domains of life are  scale-free!

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Archaea Bacteria Eukaryotes
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H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

 

Nodes: proteins                         
Links: physical interactions-binding 

TOPOLOGY OF THE PROTEIN NETWORK



C. Elegans

Li et al. Science 2004

Drosophila M.

Giot et al. Science 2003
Network Science: Scale-Free Networks



Growth and preferential attachment

Section 2     



[1] A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)
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Barabasi-Albert model Definition
The recognition that growth and preferential attachment coexist in real networks has 
inspired a minimal model called the Barabási-Albert model (BA model), which 
generates scale-free networks [1], defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, as long as each 
node has at least one link. The network develops following two steps:

1. Growth: at each timestep we add a new node with m (≤ m0) links that connect the 
      new node to m nodes already in the network. 
2. Preferential attachment: the probability Π(k) that a link of the new node connects to 
      node i depends on the degree ki as Π(ki)=ki∑j kj

Preferential attachment is a probabilistic mechanism: a new node is free to connect to 
any node in the network, whether it is a hub or has a single link. However, that if a new 
node has a choice between a degree-two and a degree-four node, it is twice as likely that 
it connects to the degree-four node. 
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One possible definition with self-loops

Possible evolution
paths with self-loops.
New node is red.



Degree dynamics
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γ = 3

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)
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Degree distribution for Barabasi-Albert model

We assume the initial m0 nodes create a fully connected graph. 
A random node j arriving at time t is with equal probability 1/N=1/(m0+t-1)  one of the nodes 1, 
2,…. N, its degree will grow with the above equation, so

for t ≥ m0+i and 0 otherwise as system size at t is N=m0+t-1 

𝑃𝑃 𝑘𝑘𝑗𝑗(𝑡𝑡)) < 𝑘𝑘 = 𝑃𝑃 𝑡𝑡𝑗𝑗 >
𝑚𝑚
1
𝛽𝛽𝑡𝑡

𝑘𝑘
1
𝛽𝛽

= 1 − 𝑃𝑃 𝑡𝑡𝑗𝑗 ≤
𝑚𝑚
1
𝛽𝛽𝑡𝑡

𝑘𝑘
1
𝛽𝛽

= 1 −
𝑚𝑚
1
𝛽𝛽𝑡𝑡

𝑘𝑘
1
𝛽𝛽(𝑡𝑡 + 𝑚𝑚0 − 1)

For the large times t (and so large network sizes) we can replace t-1 with t above, so 



γ = 3

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

Degree distribution

(i) The degree exponent is independent of m.

(ii) As the power-law describes systems of rather different ages and sizes, it is expected 
that a correct model should provide a time-independent degree distribution. Indeed, 
asymptotically the degree distribution of the BA model is independent of time (and of 
the system size N) 
 the network reaches a stationary scale-free state. 

(iii) The coefficient of the power-law distribution is proportional to m2.

Network Science: Evolving Network Models 

P k =
2𝑚𝑚2𝑡𝑡
𝑡𝑡 − 𝑡𝑡0

1
𝑘𝑘3

~𝑘𝑘−𝛾𝛾
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NUMERICAL SIMULATION OF THE BA MODEL
 



Stationarity: 
P(k) independent 
of N

m=1,3,5,7 N=100,000;150,000;200,000

Insert: 
degree dynamics

m-dependence

NUMERICAL SIMULATION OF THE BA MODEL
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The mean field theory offers the correct scaling, BUT it provides the 
wrong coefficient of the degree distribution. 

So assymptotically it is correct (k ∞), but not correct in details 
(particularly for small k). 

To fix it, we need to calculate P(k) exactly, which we will do next using a 
rate equation based approach.
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A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

Number of nodes with degree k at time t.

Nr. of degree k-1 nodes that acquire 
a new link, becoming degree k Preferential 

attachment

Since at each timestep we add one node, we have N=t (total number of nodes = number of timesteps)

2m: each node adds m links, but each link contributed to the degree of 2 nodes 

Number of links added to degree k nodes after the arrival of a new node:

Total number of 
k-nodes

New node adds 
m new links to 
other nodes

Nr. of degree k nodes that acquire a 
new link, becoming degree k+1

# k-nodes at time t+1 # k-nodes 
at time t

Gain of  k-
nodes via

k-1 k

Loss  of  k-
nodes via
k k+1

MFT - Degree Distribution: Rate Equation
 



A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

# m-nodes at time t+1 # m-
nodes at 

time t

Add one 
m-degeree 

node

Loss  of an 
m-node via
m m+1

We do not have k=0,1,...,m-1 nodes in the network (each node arrives with degree m)
 We need a separate equation for degree m modes

# k-nodes at time t+1 # k-nodes 
at time t

Gain of  k-
nodes via

k-1 k

Loss  of  k-
nodes via
k k+1

MFT - Degree Distribution: Rate Equation
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k>m

We assume that there is a stationary state in the N=t∞ limit, when P(k,∞)=P(k)

k>m

MFT - Degree Distribution: Rate Equation
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...
m+3  k

Krapivsky, Redner, Leyvraz, PRL 2000
Dorogovtsev, Mendes, Samukhin, PRL 2000 
Bollobas et al,  Random Struc. Alg. 2001

for large k

MFT - Degree Distribution: Rate Equation
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Its solution is: 

Start from eq.

Dorogovtsev and Mendes, 2003

MFT - Degree Distribution: A Pretty Caveat
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A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

All nodes follow the same growth law

Use: 
During a unit time (time step): Δk=m   A=m

β: dynamical exponent
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𝐴𝐴
𝑘𝑘𝑖𝑖
∑𝑗𝑗 𝑘𝑘𝑗𝑗

= 𝐴𝐴
𝑘𝑘𝑖𝑖
2𝑚𝑚𝑡𝑡

𝑚𝑚 = �
𝑖𝑖

∆𝑘𝑘𝑖𝑖
𝑑𝑑𝑡𝑡

= �
𝑖𝑖
𝐴𝐴

𝑘𝑘𝑖𝑖
2𝑚𝑚𝑡𝑡

= 𝐴𝐴

�
𝑗𝑗
𝑘𝑘𝑗𝑗 = 2𝑚𝑚 𝑡𝑡 − 1 +

𝑚𝑚0(𝑚𝑚0 − 1)
2

In limit: So:
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