Frontiers of Network Science Fall 2023

Class 9: Scale Free Networks and Barabasi Model II (Chapters 4-5 in Textbook)

Boleslaw Szymanski

based on slides by Albert-László Barabási & Roberta Sinatra

The meaning of scale-free

Definition:

Networks with a power law tail in their degree distribution are called 'scale-free networks'

Where does the name come from?

Critical Phenomena and scale-invariance (a detour)

Phase transitions in complex systems I: Magnetism

- Correlation length diverges at the critical point: the whole system is correlated!
- Scale invariance: there is no characteristic scale for the fluctuation (scale-free behavior).
- Universality: exponents are independent of the system's details.

Divergences in scale-free distributions

$$P(k) = Ck^{-\gamma} \quad k = [k_{\min}, \infty) \qquad \int_{k_{\min}}^{\infty} P(k)dk = 1 \qquad C = \frac{1}{\int_{k_{\min}}^{\infty} k^{-\gamma} dk} = (\gamma - 1)k_{\min}^{\gamma - 1}$$
$$P(k) = (\gamma - 1)k_{\min}^{\gamma - 1}k^{-\gamma}$$

$$< k^{m} >= \int_{k_{\min}}^{\infty} k^{m} P(k) dk \quad < k^{m} >= (\gamma - 1) k_{\min}^{\gamma - 1} \int_{k_{\min}}^{\infty} k^{m - \gamma} dk = \frac{(\gamma - 1)}{(m - \gamma + 1)} k_{\min}^{\gamma - 1} \left[k^{m - \gamma + 1} \right]_{k_{\min}}^{\infty}$$

If m-
$$\gamma$$
+1<0: $< k^m >= -\frac{(\gamma - 1)}{(m - \gamma + 1)} k_{\min}^m$

If m- γ +1>0, the integral diverges.

For a fixed γ this means that all moments with m> γ -1 diverge.

DIVERGENCE OF THE HIGHER MOMENTS

$$< k^{m} >= (\gamma - 1)k_{\min}^{\gamma - 1} \int_{k_{\min}}^{\infty} k^{m - \lambda} dk = \frac{(\gamma - 1)}{(m - \gamma + 1)}k_{\min}^{\gamma - 1} [k^{m - \gamma + 1}]_{k_{\min}}^{\infty}$$

For a fixed γ this means all moments m> γ -1 diverge.

Network	Ν	L	(k)	(k_{in}^{2})	(k_{out}^2)	(k²)	Y _{in}	Yout	γ
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*
www	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-
Protein Interactions	2,018	2,930	2.90	-	-	32.3	-	-	2.89*-

Many degree exponents are smaller than 3

 \rightarrow <k²> diverges in the N \rightarrow ∞ limit!!!

 \rightarrow <k> diverges in the N \rightarrow ∞ limit!!!

The meaning of scale-free

Random Network

Randomly chosen node: $k = \langle k \rangle \pm \langle k \rangle^{1/2}$ Scale: $\langle k \rangle$

Scale-Free Network

Randomly chosen node: $k = \langle k \rangle \pm \infty$ Scale: none

The meaning of scale-free

 $k = \langle k \rangle \pm \sigma_k$

universality

INTERNET BACKBONE

Nodes: computers, routers Links: physical lines

(Faloutsos, Faloutsos and Faloutsos, 1999)

SCIENCE CITATION INDEX

Out of over 500,000 Examined

(see http://www.sst.nrel.gov)

* citation total may be skewed because of multiple authors with the same name

SCIENCE COAUTHORSHIP

ONLINE COMMUNITIES

Nodes: online user **Links**: email contact

> Kiel University log files 112 days, N=59,912 nodes

Ebel, Mielsch, Bornholdtz, PRE 2002.

Pussokram.com online community; 512 days, 25,000 users.

Holme, Edling, Liljeros, 2002.

Twitter:

Brian Karrer, Lars Backstrom, Cameron Marlowm 2011

Barabasi-Albert Model

METABOLIC NETWORK

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

TOPOLOGY OF THE PROTEIN NETWORK

H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

Growth and preferential attachment

Barabasi-Albert model Definition

The recognition that growth and preferential attachment coexist in real networks has inspired a minimal model called the **Barabási-Albert model (BA model)**, which generates scale-free networks [1], defined as follows:

We start with m_0 nodes, the links between which are chosen arbitrarily, as long as each node has at least one link. The network develops following two steps:

- **1.** Growth: at each timestep we add a new node with $m (\leq m_0)$ links that connect the new node to m nodes already in the network.
- **2.** Preferential attachment: the probability $\Pi(k)$ that a link of the new node connects to node *i* depends on the degree k_i as $\Pi(k_i)=k_i\sum_j k_j$

Preferential attachment is a probabilistic mechanism: a new node is free to connect to any node in the network, whether it is a hub or has a single link. However, that if a new node has a choice between a degree-two and a degree-four node, it is twice as likely that it connects to the degree-four node.

[1] A.-L.Barabási, R. Albert and H. Jeong, *Physica* A **272**, 173 (1999)

Linearized Chord Diagram

The definition of the Barabási-Albert model leaves many mathematical details open:

- It does not specify the precise initial configuration of the first m_o nodes.
- It does not specify whether the *m* links assigned to a new node are added one by one, or simultaneously. This leads to potential mathematical conflicts: If the links are truly independent, they could connect to the same node *i*, leading to multi-links.

One possible definition with self-loops

$$p(i=s) = \begin{cases} \frac{k_i}{2t-1} & \text{if } 1 \le s \le t-1 \\ \frac{1}{2t-1}, & \text{if } s = t \end{cases}$$

 $G_{1}^{(0)}$ Possible evolution paths with self-loops. **G**,⁽¹⁾ New node is red. **G**,⁽²⁾ **G**₁⁽³⁾ or $p=\frac{1}{5}$ or

Degree dynamics

$$k_i(t) = m \left(\frac{t}{t_i}\right)^{\beta}$$
 $\beta = \frac{1}{2}$ for $t \ge m_0 + i$ and 0 otherwise as system size at t is $N = m_0 + t - 1$

We assume the initial m_0 nodes create a fully connected graph.

A random node *j* arriving at time *t* is with equal probability $1/N=1/(m_0+t-1)$ one of the nodes 1, 2,.... N, its degree will grow with the above equation, so

$$P(k_j(t)) < k) = P\left(t_j > \frac{m^{\frac{1}{\beta}}t}{k^{\frac{1}{\beta}}}\right) = 1 - P\left(t_j \le \frac{m^{\frac{1}{\beta}}t}{k^{\frac{1}{\beta}}}\right) = 1 - \frac{m^{\frac{1}{\beta}}t}{k^{\frac{1}{\beta}}(t+m_0-1)}$$

For the large times t (and so large network sizes) we can replace t-1 with t above, so

$$\therefore P(k) = \frac{\partial P(k_i(t) < k)}{\partial k} = \frac{2m^2 t}{m_o + t} \frac{1}{k^3} \sim k^{-\gamma} \qquad \qquad \mathbf{\gamma} = \mathbf{3}$$

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

$$k_i(t) = m \left(\frac{t}{t_i}\right)^{\beta} \qquad \beta = \frac{1}{2} \qquad \qquad P(k) = \frac{2m^2t}{t - t_0} \frac{1}{k^3} \sim k^{-\gamma} \qquad \qquad \mathbf{\gamma} = \mathbf{3}$$

(i) The degree exponent is independent of m.

(ii) As the power-law describes systems of rather different ages and sizes, it is expected that a correct model should provide a time-independent degree distribution. Indeed, asymptotically the degree distribution of the BA model is independent of time (and of the system size N)

 \rightarrow the network reaches a stationary scale-free state.

(iii) The coefficient of the power-law distribution is proportional to m².

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

NUMERICAL SIMULATION OF THE BA MODEL

(a) We generated networks with N=100,000and $m_0=m=1$ (blue), 3 (green), 5 (grey), and 7 (orange). The fact that the curves are parallel to each other indicates that γ is independent of m and m_0 . The slope of the purple line is -3, corresponding to the predicted degree exponent $\gamma=3$. Inset: (5.11) predicts $p_k \sim 2m^2$, hence $p_k/2m^2$ should be independent of m. Indeed, by plotting $p_k/2m^2$ vs. k, the data points shown in the main plot collapse into a single curve.

(b) The Barabási-Albert model predicts that p_k is independent of *N*. To test this we plot p_k for N = 50,000 (blue), 100,000 (green), and 200,000 (grey), with $m_0 = m = 3$. The obtained p_k are practically indistinguishable, indicating that the degree distribution is stationary, i.e. independent of time and system size.

NUMERICAL SIMULATION OF THE BA MODEL

FIG. 21. Numerical simulations of network evolution: (a) Degree distribution of the Barabási-Albert model, with $N=m_0+t=300\,000$ and \bigcirc , $m_0=m=1$; \square , $m_0=m=3$; \diamond , $m_0=m=5$; and \triangle , $m_0=m=7$. The slope of the dashed line is $\gamma=2.9$, providing the best fit to the data. The inset shows the rescaled distribution (see text) $P(k)/2m^2$ for the same values of m, the slope of the dashed line being $\gamma=3$; (b) P(k) for $m_0=m=5$ and various system sizes, \bigcirc , $N=100\,000$; \square , $N=150\,000$; \diamondsuit , $N=200\,000$. The inset shows the time evolution for the degree of two vertices, added to the system at $t_1=5$ and $t_2=95$. Here $m_0=m=5$, and the dashed line has slope 0.5, as predicted by Eq. (81). After Barabási, Albert, and Jeong (1999).

Network Science: Evolving Network Models

The mean field theory offers the correct scaling, BUT it provides the wrong coefficient of the degree distribution.

So assymptotically it is correct ($k \rightarrow \infty$), but not correct in details (particularly for small k).

To fix it, we need to calculate P(k) exactly, which we will do next using a rate equation based approach.

< N(k, t) >= tP(K, t) Number of nodes with degree k at time t.

Since at each timestep we add one node, we have N=t (total number of nodes = number of timesteps)

 $\Pi(k) = \frac{\kappa}{\sum_{i=1}^{k} k_{i}} = \frac{\kappa}{2mt}$ 2*m*: each node adds *m* links, but each link contributed to the degree of 2 nodes

Number of links added to degree k nodes after the arrival of a new node:

Nr. of degree *k-1* nodes that acquire a new link, becoming degree k

$$\frac{k-1}{2}P(k-1,t)$$

 $k \rightarrow k+1$

Nr. of degree k nodes that acquire a new link, becoming degree k+1

 $k-1 \rightarrow k$

We do not have k=0,1,...,m-1 nodes in the network (each node arrives with degree *m*) \rightarrow We need a separate equation for degree *m* modes

A.-L.Barabási, R. Albert and H. Jeong, *Physica A* 272, 173 (1999)

$$\frac{(N+1)P(k,t+1) = NP(k,t)}{2} + \frac{k-1}{2}P(k-1,t) - \frac{k}{2}P(k,t) \qquad k>m$$
$$(N+1)P(m,t+1) = NP(m,t) + 1 - \frac{m}{2}P(m,t)$$

We assume that there is a stationary state in the N=t $\rightarrow \infty$ limit, when P(k, ∞)=P(k)

$$(N+1)P(k,t+1) - NP(k,t) \to NP(k,\infty) + P(k,\infty) - NP(k,\infty) = P(k,\infty) = P(k)$$

$$(N+1)P(m,t+1) - NP(m,t) \to P(m)$$

$$P(k) = \frac{k-1}{2}P(k-1) - \frac{k}{2}P(k)$$

$$P(k) = \frac{k-1}{k+2}P(k-1)$$
 k>m

$$P(m) = 1 - \frac{m}{2}P(m)$$

$$P(m) = \frac{2}{2+m}$$

 $P(k) = \frac{-1}{2} P(k-1) - \frac{-1}{2} P(k)$ $P(m) = 1 - \frac{m}{2} P(m)$

$$P(k) = \frac{k-1}{k+2}P(k-1) \implies P(k+1) = \frac{k}{k+2}P(k)$$

$$P(m) = \frac{2}{m+2}$$

$$P(m+1) = \frac{m}{m+3}P(m) = \frac{2m}{(m+2)(m+3)}$$

$$P(m+2) = \frac{m+1}{m+4}P(m+1) = \frac{2m(m+1)}{(m+2)(m+3)(m+4)}$$

$$P(m+3) = \frac{m+2}{m+5}P(m+2) = \frac{2m(m+1)}{(m+3)(m+4)(m+5)} \qquad m+3 \neq k$$
...

$$P(k) = \frac{2m(m+1)}{k(k+1)(k+2)}$$
 $P(k) \sim k^{-3}$ for large *k*

Krapivsky, Redner, Leyvraz, PRL 2000 Dorogovtsev, Mendes, Samukhin, PRL 2000 Bollobas et al, Random Struc. Alg. 2001

MFT - Degree Distribution: A Pretty Caveat

Start from eq.
$$P(k) = \frac{k-1}{2}P(k-1) - \frac{k}{2}P(k)$$

2P(k) = (k-1)P(k-1) - kP(k) = -P(k-1) - k[P(k) - P(k-1)]

$$2P(k) = -P(k-1) - k \frac{P(k) - P(k-1)}{k - (k-1)} = -P(k-1) - k \frac{\partial P(k)}{\partial k}$$

$$P(k) = -\frac{1}{2} \frac{\partial [kP(k)]}{\partial k}$$

Its solution is: $P(k) \sim k^{-3}$

Dorogovtsev and Mendes, 2003

All nodes follow the same growth law

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)